\(\int (a+b \sin ^4(c+d x))^p \tan ^4(c+d x) \, dx\) [569]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [F(-1)]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 23, antiderivative size = 23 \[ \int \left (a+b \sin ^4(c+d x)\right )^p \tan ^4(c+d x) \, dx=\text {Int}\left (\left (a+b \sin ^4(c+d x)\right )^p \tan ^4(c+d x),x\right ) \]

[Out]

Unintegrable((a+b*sin(d*x+c)^4)^p*tan(d*x+c)^4,x)

Rubi [N/A]

Not integrable

Time = 0.04 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \left (a+b \sin ^4(c+d x)\right )^p \tan ^4(c+d x) \, dx=\int \left (a+b \sin ^4(c+d x)\right )^p \tan ^4(c+d x) \, dx \]

[In]

Int[(a + b*Sin[c + d*x]^4)^p*Tan[c + d*x]^4,x]

[Out]

Defer[Int][(a + b*Sin[c + d*x]^4)^p*Tan[c + d*x]^4, x]

Rubi steps \begin{align*} \text {integral}& = \int \left (a+b \sin ^4(c+d x)\right )^p \tan ^4(c+d x) \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 21.01 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \left (a+b \sin ^4(c+d x)\right )^p \tan ^4(c+d x) \, dx=\int \left (a+b \sin ^4(c+d x)\right )^p \tan ^4(c+d x) \, dx \]

[In]

Integrate[(a + b*Sin[c + d*x]^4)^p*Tan[c + d*x]^4,x]

[Out]

Integrate[(a + b*Sin[c + d*x]^4)^p*Tan[c + d*x]^4, x]

Maple [N/A] (verified)

Not integrable

Time = 1.56 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00

\[\int {\left (a +b \left (\sin ^{4}\left (d x +c \right )\right )\right )}^{p} \left (\tan ^{4}\left (d x +c \right )\right )d x\]

[In]

int((a+b*sin(d*x+c)^4)^p*tan(d*x+c)^4,x)

[Out]

int((a+b*sin(d*x+c)^4)^p*tan(d*x+c)^4,x)

Fricas [N/A]

Not integrable

Time = 0.36 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.61 \[ \int \left (a+b \sin ^4(c+d x)\right )^p \tan ^4(c+d x) \, dx=\int { {\left (b \sin \left (d x + c\right )^{4} + a\right )}^{p} \tan \left (d x + c\right )^{4} \,d x } \]

[In]

integrate((a+b*sin(d*x+c)^4)^p*tan(d*x+c)^4,x, algorithm="fricas")

[Out]

integral((b*cos(d*x + c)^4 - 2*b*cos(d*x + c)^2 + a + b)^p*tan(d*x + c)^4, x)

Sympy [F(-1)]

Timed out. \[ \int \left (a+b \sin ^4(c+d x)\right )^p \tan ^4(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+b*sin(d*x+c)**4)**p*tan(d*x+c)**4,x)

[Out]

Timed out

Maxima [N/A]

Not integrable

Time = 14.08 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \left (a+b \sin ^4(c+d x)\right )^p \tan ^4(c+d x) \, dx=\int { {\left (b \sin \left (d x + c\right )^{4} + a\right )}^{p} \tan \left (d x + c\right )^{4} \,d x } \]

[In]

integrate((a+b*sin(d*x+c)^4)^p*tan(d*x+c)^4,x, algorithm="maxima")

[Out]

integrate((b*sin(d*x + c)^4 + a)^p*tan(d*x + c)^4, x)

Giac [N/A]

Not integrable

Time = 3.00 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \left (a+b \sin ^4(c+d x)\right )^p \tan ^4(c+d x) \, dx=\int { {\left (b \sin \left (d x + c\right )^{4} + a\right )}^{p} \tan \left (d x + c\right )^{4} \,d x } \]

[In]

integrate((a+b*sin(d*x+c)^4)^p*tan(d*x+c)^4,x, algorithm="giac")

[Out]

integrate((b*sin(d*x + c)^4 + a)^p*tan(d*x + c)^4, x)

Mupad [N/A]

Not integrable

Time = 18.60 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \left (a+b \sin ^4(c+d x)\right )^p \tan ^4(c+d x) \, dx=\int {\mathrm {tan}\left (c+d\,x\right )}^4\,{\left (b\,{\sin \left (c+d\,x\right )}^4+a\right )}^p \,d x \]

[In]

int(tan(c + d*x)^4*(a + b*sin(c + d*x)^4)^p,x)

[Out]

int(tan(c + d*x)^4*(a + b*sin(c + d*x)^4)^p, x)